Perturbations of integrable systems and Dyson-Mehta integrals

نویسنده

  • Alexander V. Turbiner
چکیده

We show that the existence of algebraic forms of quantum, exactly-solvable, completely-integrable A−B−C−D and G2, F4, E6,7,8 Olshanetsky-Perelomov Hamiltonians allow to develop the algebraic perturbation theory, where corrections are computed by pure linear algebra means. A Lie-algebraic classification of such perturbations is given. In particular, this scheme admits an explicit study of anharmonic many-body problems. The approach also allows to calculate the ratio of a certain generalized Dyson-Mehta integrals algebraically, which are interested by themselves.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ON CONVERGENCE THEOREMS FOR FUZZY HENSTOCK INTEGRALS

The main purpose of this paper is to establish different types of convergence theorems for fuzzy Henstock integrable functions, introduced by  Wu and Gong cite{wu:hiff}. In fact, we have proved fuzzy uniform convergence theorem, convergence theorem for fuzzy uniform Henstock integrable functions and fuzzy monotone convergence theorem. Finally, a necessary and sufficient condition under which th...

متن کامل

GENERALIZED FUZZY VALUED $theta$-Choquet INTEGRALS AND THEIR DOUBLE-NULL ASYMPTOTIC ADDITIVITY

The generalized fuzzy valued $theta$-Choquet integrals will beestablished for the given $mu$-integrable fuzzy valued functionson a general fuzzy measure space, and the convergence theorems ofthis kind of fuzzy valued integral are being discussed.Furthermore, the whole of integrals is regarded as a fuzzy valuedset function on measurable space, the double-null asymptoticadditivity and pseudo-doub...

متن کامل

A PDE approach to finite time approximations in Ergodic Theory

For dynamical systems defined by vector fields over a compact invariant set, we introduce a new class of approximated first integrals based on finite-time averages and satisfying an explicit first order partial differential equation. Referring to the PDE framework, we detect their viscosity robustness with respect to stochastic perturbations of the vector field. We formulate this approximating ...

متن کامل

Matrix integrals and several integrable differential-difference systems

In this paper, the relations between three special forms of matrix integrals and their associated integrable differential-difference systems are considered. It turns out that these matrix integrals with special β = 2 and 1, 4 satisfy the differential-difference KP equation, the two-dimensional Toda lattice, the semi-discrete Toda equation and their Pfaffianized systems, respectively.

متن کامل

On Limit Cycles Appearing by Polynomial Perturbation of Darbouxian Integrable Systems

We prove an existential finiteness result for integrals of rational 1-forms over the level curves of Darbouxian integrals. 1. Limit cycles born by perturbation of integrable systems 1.1. Poincaré–Pontryagin integral. Limit cycles (isolated periodic trajectories) of polynomial planar vector fields can be produced by perturbing integrable systems which have nested continuous families of non-isola...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002